Worksheet on Polynomials

Class 10

- 1. A zero of the polynomial $2x^2 + x + K$ is 3. Find value of K
- 2. If the polynomial $x^4 6x^3 + 16x^2 25x + 10$ is divided by $(x^2 2x + k)$ the remainder comes out to be x + a, find k and a.
- 3. Manish engages a labour to get some repair work. Charges to be paid for this work are zeroes of the polynomial $x^2 300x + 22500$.
 - (a) Find zeroes of this polynomial
 - (b) Labour claims Rs. 125 for the whole work. Manish paid the actual amount. What value is depicted by Manish?
- 4. Check whether g(x) is a factor of p(x) by applying the division algorithm.

$$p(x) = 2x^5 - 4x^3 + 2x^2 + 5x + 1$$
, $g(x) = x^3 - 4x + 1$

- 5. Form a quadratic polynomial whose zeroes are $\frac{3-\sqrt{3}}{5}$ and $\frac{3+\sqrt{3}}{5}$
- 6. If α and β are zeroes of the polynomial $x^2 \pm 7x \pm 7$, find the value of $\frac{1}{\alpha} + \frac{1}{\beta} 2\alpha\beta$
- 7. Find the zeroes of the following polynomials by factorization method and verify the relationship between the zeroes and coefficients of the polynomial

(a)
$$4x^2 + 5\sqrt{2}x - 3$$

(b)
$$2x^2 - (1 + 2\sqrt{2})x + \sqrt{2}$$

(c)
$$v^2 + 4\sqrt{3} v - 15$$

(d)
$$7y^2 - \frac{11}{3}y - \frac{2}{3}$$

- 8. If one zero of the polynomial $(a^2 + 9)x^2 + 13x + 6a$ is reciprocal of the other, find the value of a.
- 9. If the zeroes of the polynomial $x^2 + px + q$ are double of the zeroes of $2x^2 5x 3$, find value of p and q.
- 10. If α and β are the zeroes of the polynomial $f(x) \equiv p x^2 + qx + r$, the evaluate

$$\frac{1}{p\alpha+q}+\frac{1}{p\beta+q}$$

Worksheet On Linear Equations

Class 10

1. For which values of p and q, will the following pair of linear equations have infinitely many solution?

$$4x + 5y = 2$$
,
 $(2p + 7q)x + (p + 8q)y = 2q - p + 1$

- 2. Solve by elimination method: 11x + 15y + 23 = 0; 7x 2y 20 = 0
- 3. Equation 2x = 5y + 4 is given. Write another linear equation so that the lines represented by the pair are (i) intersecting (ii) coincident (iii) parallel
- 4. Determine algebrically, the vertices of the triangle formed by the lines 3x y = 3, 2x 3y = 2, x + 2y = 8
- 5. Solve graphically the pair of equations 2x + y = 6 and 2x y + 2 = 0. Find the ratio of the areas of the two triangles formed by the lines representing these equations with X- axis and the lines with Y- axis.
- 6. Solve the system of following equations:

$$7^{x} + 5^{y} = 74$$

 $7^{x+1} - 5^{y+1} = 218$

7. Solve by cross multiplication method:

$$\frac{27}{x+y} - \frac{15}{x-y} = -2,$$

$$\frac{30}{x+y} - \frac{1}{x-y} = 1$$

- 8. The sum of a two-digit number and number obtained by reversing the order of digits is 99. If the digits of the number differ by 3, then find the numbers.
- 9. Solve by elimination method :8x + 5y = 9, 3x + 2y = 4
- 10. Father's age is 3 times the sum of ages of his two children. After 5 yrs, his age will be twice the sum of ages of the two children. Find the age of the father.

Revision Question on Triangles

Class - X

- 1. In a Δ triangle ABC, DE | | BC. If DE = $\frac{2}{3}$ BC and area of Δ ABC = 81 sq cm find the area of Δ ADE
- 2. P is the mid point of side BC of \triangle ABC. Q is the mid point of AP, BQ when produced meets AC at L. Prove that AL = $\frac{1}{3}$ AC
- 3. Prove that three times the sum of the squares of the sides of a triangle is equal to four times the sum of the medians of the triangle.
- 4. If the diagonal of a trapezium divides the other diagonal in the ratio 1:3 prove that one of the parallel sides is three times the other.
- 5. In an isosceles triangle $\triangle ABC$, the base AB is produced both ways to P and Q such that AP X BQ = $(AC)^2$ Prove that $\triangle ACP \sim \triangle BCQ$
- 6. In a $\triangle PQR$, PQ = PR, X is a point on PR such that $QR^2 = PR$ X XR. Prove that QX = QR
- 7. If the areas of two similar triangles are equal prove that they are congruent.
- 8. ABC is a right angled triangle right angled at B. AD and CE are two medians drawn from A and C respectively. AC = 5 cm and AD = $\frac{3\sqrt{5}}{2}$ cm. Find the length of CE.
- 9. If A is the area of a right angled triangle and b is one of the sides containing right angle. Prove that the length of the altitude on the hypotenuse $\frac{2 A b}{\sqrt{h^4 + 4A^2}}$
- 10. In $\Delta PQR~XY~||~QR,~PX=1~cm,~XQ=3~cm,~YR=4.5~cm~QR=9~cm,~find~PY~and~XY.~If$ the area of $\Delta PXY~is~A~cm^2$, find area of $\Delta PQR~and~area~of$ trapezium XYRQ in terms of A.
- 11. $\ln \Delta ABC$, XY is parallel to BC and it divides ΔABC into two parts of equal area. Prove that

$$\frac{BX}{AB} = \frac{\sqrt{2} - 1}{\sqrt{2}}$$